HOTS Enigmatic
Live
wb_sunny

Breaking News

Menghitung Luas Segi-n Beraturan Dengan Trigonometri

Menghitung Luas Segi-n Beraturan Dengan Trigonometri

Menghitung Luas Segi-n Beraturan Dengan Trigonometri Bimbel Jakarta Timur





Bimbel Jakarta Timur akan membahas mengenai Menghitung Luas Segi-n Beraturan Dengan Trigonometri. Segi-n beraturan yaitu bangun datar atau bentuk dimensi 2 yang terdiri dari garis-garis bersambungan membentuk bangun tertutup dengan  sisi yang sama panjang dan  sudut yang sama besar. 


Jumlah besar sudut dalam segi-n beraturan dapat ditentukan dengan rumus :

Jumlah besar sudut dalam  segi-n : (n-2) x 180° 

contoh :

- Jumlah besar sudut dalam segitiga      =(3-2) x 180°= 180°
Jumlah besar sudut dalam segiempat  =(4-2) x 180°=36
Jumlah besar sudut dalam segilima      =(5-2) x 180°=54




Jumlah besar setiap sudut segi-n beraturan dapat ditentukan dengan rumus :

Jumlah besar setiap sudut segi-n : (n-2) x 180° 
                                                                          n

contoh :



- Jumlah besar setiap sudut segitiga      =(3-2) x 180°=6
                                                                                  3

Jumlah besar setiap sudut  segiempat  = (4-2) x 180°=9
                                                                                  4

Jumlah besar setiap sudut segilima      =(5-2) x 180°=108°
                                                                                   5


Segi-n beraturan dalam lingkaran :


Setiap sudut dalam segi-n beraturan akan dilalui oleh lingkaran yang disebut lingkaran luar. setiap sudutnya menyentuh lingkaran luar tersebut. Setiap segi-n beraturan dapat dibagi menjadi n buah segitiga yang kongruen. 

Sudut dalam segitiga dalam pada segi-n beraturan dapat dihitung dengan rumus: 

 Besar sudut dalam segitiga pada segi-n (α)=360/n



Menghitung luas segitiga dalam segi-n beraturan

Jika diketahui panjang jari-jari lingkaran dalam :

Luas segitiga dalam : ½ x r²x Sin α


Jika diketahui panjang sisi segi-n :

Luas segitiga dalam : s²x Sin²β 
                                       2 x Sin α


Dimana besar sudut β=180 - α
                                                2

Menghitung luas segi-n beraturan

Karena segi-n beraturan terdiridari n buah segitiga yang kongruen, maka luas segi-n adalah n kali luas segitiga dalam tersebut. 

Jika diketahui panjang jari-jari lingkaran dalam :

Luas segi-n : n x ½ x r²x Sin α


Jika diketahui panjang sisi segi-n :

Luas segi-n : n x s²x Sin²β 
                           2 x Sin α



Berikut adalah contoh menghitung luas beberapa segi-n


Luas segilima beraturan


Bimbel Jakarta Timur | Menghitung Luas Segi-n Beraturan Dengan Trigonometri
luas segi lima beraturan



Jika diketahui panjang jari-jari lingkaran dalam :

Luas segilima : 5 x ½ x r²x Sin (360°/5)=5/2 x r²x Sin 72°


Jika diketahui panjang sisi segilima :

Luas segitiga dalam : 5 x s²x Sin²54° 
                                          2 x Sin 72°




Luas segienam beraturan


Bimbel Jakarta Timur | Menghitung Luas Segi-n Beraturan Dengan Trigonometri
segi enam beraturan

Jika diketahui panjang jari-jari lingkaran dalam :
Luas segilima : 6 x ½ x r²x Sin (360°/6)=3 x r²x Sin 60°


Jika diketahui panjang sisi segienam :

Luas segienam : 6 x s²x Sin² 60° =3 x s²x Sin 60°
                                     2 x Sin 60°





Luas segidelapan beraturan 


Bimbel Jakarta Timur | Menghitung Luas Segi-n Beraturan Dengan Trigonometri
luas segi delapan beraturan

Jika diketahui panjang jari-jari lingkaran dalam :

Luas segilima : 8 x ½ x r²x Sin (360°/8)=4 x r²x Sin 45°


Jika diketahui panjang sisi segidelapan :

Luas segitiga dalam : 8 x s²x Sin²45° =  4 x s²x Sin²45° 
                                         2 x Sin 67,5°               Sin 67,5°


BIMBEL JAKARTA TIMUR

https://www.radarhot.com/2017/05/menghitung-luas-segi-n-beraturan-dengan.html

Tags

Newsletter Signup

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque.

Posting Komentar